Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.136
Filtrar
1.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543039

RESUMO

Yak whey protein concentrates (YWPCs) have good functional properties, but there is still a gap in the study of their peptides. In this study, peptides were obtained by enzymatic hydrolysis, and the bioactivity of each ultrafiltration fraction was evaluated using an optimal process. YWPCs were isolated and purified from yak milk as the raw material. Alkaline protease, trypsin, and papain were used to hydrolyze YWPCs. The protease with the highest degree of hydrolysis (DH) and peptide concentration was selected as the most suitable enzyme. The effects of pH, temperature, time, and the enzyme-to-substrate ratio (E/S) on the DH and peptide concentration were investigated, and response surface methodology was utilized to optimize the hydrolysis process. The hydrolysate was separated using ultrafiltration membranes with molecular weight cut-offs of 10 kDa, 5 kDa, 3 kDa, and 1 kDa. The bioactivity of each ultrafiltration component was analyzed, including the inhibition rates of α-amylase and xanthine oxidase (XOD) activities and the scavenging rates of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radicals. The results indicated that alkaline protease was the best enzyme for hydrolyzing YWPCs. The peptide concentration in the YWPC hydrolysate was the highest (17.21 mg/mL) at a pH of 8 and a concentration of 7500 U/g, after 2.5 h at 62 °C. The enzymatic hydrolysate was ultrafiltered to yield four peptide fractions, of which the <1 kDa peptides exhibited the highest α-amylase inhibitory activity (22.06%), XOD inhibitory activity (17.15%), and ABTS cationic free radical scavenging rate (69.55%). This demonstrates the potential of YWPC hydrolyzed peptides for hypoglycemic, uric acid-lowering, and antioxidant applications, providing a theoretical basis for the high-value utilization of YWPCs.


Assuntos
Antioxidantes , Benzotiazóis , Sequestradores de Radicais Livres , Ácidos Sulfônicos , Animais , Bovinos , Hidrólise , Sequestradores de Radicais Livres/química , Proteínas do Soro do Leite , Antioxidantes/química , Peptídeos/química , Papaína/metabolismo , alfa-Amilases , Hidrolisados de Proteína/química
2.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474192

RESUMO

The brain is susceptible to oxidative stress, which is associated with various neurological diseases. Edaravone (MCI-186, 3-methyl-1 pheny-2-pyrazolin-5-one), a free radical scavenger, has promising effects by quenching hydroxyl radicals (∙OH) and inhibiting both ∙OH-dependent and ∙OH-independent lipid peroxidation. Edaravone was initially developed in Japan as a neuroprotective agent for acute cerebral infarction and was later applied clinically to treat amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. There is accumulating evidence for the therapeutic effects of edaravone in a wide range of diseases related to oxidative stress, including ischemic stroke, ALS, Alzheimer's disease, and placental ischemia. These neuroprotective effects have expanded the potential applications of edaravone. Data from experimental animal models support its safety for long-term use, implying broader applications in various neurodegenerative diseases. In this review, we explain the unique characteristics of edaravone, summarize recent findings for specific diseases, and discuss its prospects for future therapeutic applications.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Feminino , Gravidez , Esclerose Amiotrófica Lateral/tratamento farmacológico , Antioxidantes/uso terapêutico , Antipirina , Edaravone/farmacologia , Edaravone/uso terapêutico , Sequestradores de Radicais Livres/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Placenta
3.
Int J Med Mushrooms ; 26(3): 67-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505904

RESUMO

Five kinds of exopolysaccharides (EPS) were obtained by fermentation of Scleroderma areolatum Ehrenb. with sucrose, glucose, maltose, lactose, and fructose as carbon sources. Antioxidant abilities of the obtained EPSs were evaluated by inhibiting AAPH, HO·, and glutathione (GS·) induced oxidation of DNA and quenching 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS· and galvinoxyl radicals. The effects of carbon sources on the antioxidant properties of EPSs could be examined. The results showed that five EPSs can effectively inhibit radicals induced oxidation of DNA, and the thiobarbituric acid reactive substances (TBARS) percentages were 44.7%-80.8%, 52.3%-77.5%, and 44.7%-73.3% in inhibiting AAPH, HO·, and GS· induced oxidation of DNA, respectively. All five EPSs could scavenge ABTS· and galvinoxyh, and exhibit superior activity in scavenging free radicals. Antioxidant abilities of EPS with fructose as carbon source were highest among five EPS.


Assuntos
Amidinas , Antioxidantes , Basidiomycota , Benzotiazóis , Carbono , Ácidos Sulfônicos , Antioxidantes/farmacologia , Antioxidantes/química , DNA/química , Frutose , Sequestradores de Radicais Livres/farmacologia
4.
Int J Biol Macromol ; 262(Pt 2): 130260, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368984

RESUMO

Radical scavengers were employed to evaluate the influence of various active species (•OH, •O, and H2O2) on the rheological properties, antioxidant activity, and molecular conformation of chitosan under solution plasma process (SPP) degradation. ESR analysis showed that •OH and •O radicals played important roles in SPP degradation. The results of rheological properties and antioxidant activity indicated that the •OH scavenger (tert-butanol), •O scavenger (1, 4-benzoquinone), and H2O2 scavenger (MnO2) remarkably inhibited the decrease of G' and G" of the degraded chitosan, the formation of gel structure, and the increase of antioxidant activity. The analysis of molecular conformation of the chitosan by particle size analysis, atomic force microscopy (AFM), and high performance size exclusion chromatography coupled with multi-angle laser light scattering (HPSEC-MALLS) revealed that the decrease of particle size, molecular aggregation, and molecular weight of chitosan was inhibited after the addition of radical scavengers. An evident effect of radical scavengers on the hard sphere conformation of chitosan was observed. It was found that the above effects were strongly dependent on the scavenger concentration. These results proved that •OH, •O, and H2O2 played important roles in SPP treatment. For the rheological properties and molecular conformation, H2O2 exhibited the greatest impact. For the antioxidant activity and molecular weight, •OH presented the biggest influence. Besides, •O expressed the weakest effect. This study will be beneficial to reveal the action mechanisms of SPP technology to the degradation of chitosan.


Assuntos
Antioxidantes , Quitosana , Antioxidantes/farmacologia , Antioxidantes/química , Quitosana/química , Peróxido de Hidrogênio/química , Compostos de Manganês , Óxidos , Radicais Livres , Conformação Molecular , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química
5.
J Biochem Mol Toxicol ; 38(3): e23661, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369721

RESUMO

Phenothiazines (PTZs) are an emerging group of molecules showing effectiveness toward redox signaling and reduction of oxidative injury to cells, via the activation on Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Nrf2). Although several electrophilic and indirect Nrf2 activators have been reported, the risk of "off-target" effect due to the complexity of their molecular mechanisms of action, has aroused research interest toward non-electrophilic and direct modulators of Nrf2 pathway, such as PTZs. This review represents the first overview on the roles of PTZs as non-electrophilic Nrf2 activator and free radical scavengers, as well as on their potential therapeutic effects in oxidative stress-mediated diseases. Here, we provide a collective and comprehensive information on the PTZs ability to scavenge free radicals and activate the Nrf2 signaling pathway, with the aim to broaden the knowledge of their therapeutic potentials and to stimulate innovative research ideas.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Fenotiazinas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Sequestradores de Radicais Livres , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Fenotiazinas/farmacologia
6.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338887

RESUMO

Vascularized composite allotransplantation (VCA) represents a promising reconstructive solution primarily conducted to improve quality of life. However, tissue damage caused by cold-ischemia (CI) storage prior to transplant represents a major factor limiting widespread application. This study investigates the addition of the novel free radical scavenger PrC-210 to UW Organ Preservation Solution (UW Solution) to suppress CI-induced skeletal muscle injury in a rat hind limb amputation model. Lewis rats received systemic perfusion of UW solution +/- PrC-210 (0 mM control, 10 mM, 20 mM, 30 mM, or 40 mM), followed by bilateral transfemoral amputation. Limbs were stored in 40 mL of the same perfusate at 4 °C for 48 h. Muscle punch biopsies were taken at set times over the 48 h cold-storage period and analyzed for caspase-3,7 activity, cytochrome C levels, and qualitative histology. A single 15 s perfusion of PrC-210-containing UW Solution conferred a dose-dependent reduction in CI-induced muscle cell death over 48 h. In the presence of PrC-210, muscle cell mitochondrial cytochrome C release was equivalent to 0 h controls, with profound reductions in the caspase-3,7 apoptotic marker that correlated with limb histology. PrC-210 conferred complete prevention of ROS-induced mitochondrial lysis in vitro, as measured by cytochrome C release. We conclude that the addition of 30 mM PrC210 to UW Solution conferred the most consistent reduction in CI limb damage, and it warrants further investigation for clinical application in the VCA setting.


Assuntos
Aloenxertos Compostos , Diaminas , Soluções para Preservação de Órgãos , Traumatismo por Reperfusão , Compostos de Sulfidrila , Ratos , Animais , Sequestradores de Radicais Livres , Caspase 3 , Aloenxertos Compostos/patologia , Citocromos c , Qualidade de Vida , Ratos Endogâmicos Lew , Glutationa/farmacologia , Alopurinol/farmacologia , Insulina/farmacologia , Isquemia , Preservação de Órgãos , Temperatura Baixa , Traumatismo por Reperfusão/patologia , Rafinose , Adenosina
7.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338912

RESUMO

Despite significant advancements in understanding the causes and progression of tumors, cancer remains one of the leading causes of death worldwide. In light of advances in cancer therapy, there has been a growing interest in drug repurposing, which involves exploring new uses for medications that are already approved for clinical use. One such medication is edaravone, which is currently used to manage patients with cerebral infarction and amyotrophic lateral sclerosis. Due to its antioxidant and anti-inflammatory properties, edaravone has also been investigated for its potential activities in treating cancer, notably as an anti-proliferative and cytoprotective drug against side effects induced by traditional cancer therapies. This comprehensive review aims to provide updates on the various applications of edaravone in cancer therapy. It explores its potential as a standalone antitumor drug, either used alone or in combination with other medications, as well as its role as an adjuvant to mitigate the side effects of conventional anticancer treatments.


Assuntos
Esclerose Amiotrófica Lateral , Neoplasias , Fármacos Neuroprotetores , Humanos , Edaravone/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Esclerose Amiotrófica Lateral/tratamento farmacológico , Antioxidantes/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/induzido quimicamente , Sequestradores de Radicais Livres/farmacologia
8.
Drug Res (Stuttg) ; 74(2): 67-76, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38346682

RESUMO

Parkinson's disease is the loss of dopaminergic neurons in the substantial nigra part of the brain leading to neurodegeneration. Whereas, reactive oxygen species and mitochondrial impairment are considered to be the major pathophysiology of neurodegeneration. The benzylidene-based 2-chloroquinolin derivatives were synthesized and characterized by FT-IR, NMR, and MS spectrometry which were screened using various in-silico approaches. The designed compounds were further assessed using in-vitro cytotoxicity assay by the MTT method, DPPH assay, and Glutathione measurements in the SHSY5Y neuroblastoma cell lines. The compounds JD-7 and JD-4 were found to have a binding affinity of - 7.941 and - 7.633 kcal/mol with an MMGBSA score of - 64.614 and - 62.817 kcal/mol. The compound JD-7 showed the highest % Cell viability of 87.64% at a minimal dose of 125 µg/mL by the MTT method. The neurotoxicity effects were observed at increasing concentrations from 0 to 125, 250, and 500 µg/mL. Further, free radical scavenging activity for the JD-7 was found to be 36.55 at lowest 125 µg/mL concentrations. At 125 µg/mL, GSH % and GSSG % were found to be increasing in rotenone treatment, whereas JD-7 and JD-4 were found in the downregulation of glutathione level in the pre-treated rotenone SHSY5Y neuroblastoma cell lines. The benzylidene-based chloroquinolin derivatives were synthesized, and among the compounds JD-1 to JD-13, the compounds JD-7, and JD-4 were found to have having highest % cell viability, free radical scavenging molecules, and glutathione levels in the SHSY5Y neuroblastoma cell lines and could be used as free radical scavengers in Parkinson's disease.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Rotenona , Espectroscopia de Infravermelho com Transformada de Fourier , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo
9.
Front Immunol ; 15: 1339304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361952

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine hormone with many physiological and biological roles. Melatonin is an antioxidant, anti-inflammatory, free radical scavenger, circadian rhythm regulator, and sleep hormone. However, its most popular role is the ability to regulate sleep through the circadian rhythm. Interestingly, recent studies have shown that melatonin is an important and essential hormone during pregnancy, specifically in the placenta. This is primarily due to the placenta's ability to synthesize its own melatonin rather than depending on the pineal gland. During pregnancy, melatonin acts as an antioxidant and anti-inflammatory, which is necessary to ensure a stable environment for both the mother and the fetus. It is an essential antioxidant in the placenta because it reduces oxidative stress by constantly scavenging for free radicals, i.e., maintain the placenta's integrity. In a healthy pregnancy, the maternal immune system is constantly altered to accommodate the needs of the growing fetus, and melatonin acts as a key anti-inflammatory by regulating immune homeostasis during early and late gestation. This literature review aims to identify and summarize melatonin's role as a powerful antioxidant and anti-inflammatory that reduces oxidative stress and inflammation to maintain a favorable homeostatic environment in the placenta throughout gestation.


Assuntos
Melatonina , Gravidez , Feminino , Humanos , Melatonina/farmacologia , Antioxidantes , Placenta , Sequestradores de Radicais Livres , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
10.
Food Chem ; 445: 138801, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387316

RESUMO

Frog skin, a by-product of Quasipaa Spinosa farming, is rich in protein and potentially a valuable raw material for obtaining antioxidant peptides. This study used papain combined with acid protease to digest frog skin in a two-step enzymatic hydrolysis method. Based on a single factor and response surface experiments, experimental conditions were optimized, and the degree of hydrolysis was 30 %. A frog skin hydrolysate (QSPH-Ⅰ-3) was obtained following ultrafiltration and gel filtration chromatography. IC50 for DPPH, ABTS, and hydroxyl radical scavenging capacities were 1.68 ± 0.05, 1.20 ± 0.14 and 1.55 ± 0.11 mg/mL, respectively. Peptide sequences (17) were analyzed and, through molecular docking, peptides with low binding energies for KEAP1 were identified, which might affect the NRF2-KEAP1 pathway. These findings suggest protein hydrolysates and antioxidant peptide derivatives might be used in functional foods.


Assuntos
Antioxidantes , Sequestradores de Radicais Livres , Antioxidantes/química , Hidrólise , Proteína 1 Associada a ECH Semelhante a Kelch , Sequestradores de Radicais Livres/química , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Peptídeos/química , Hidrolisados de Proteína/química
11.
Neuroscience ; 540: 1-11, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242279

RESUMO

Mitochondrial dysfunction, which results in the overproduction of oxygen free radicals, is a crucial mechanism underlying cerebral ischemia-reperfusion injury. 4'-Hydroxyl-2-substituted phenylnitronyl nitroxide (HPN), which is an antioxidant and free radical scavenger, can effectively scavenge oxygen free radicals, suggesting its potential as a protective agent against cerebral ischemia-reperfusion injury. In this study, we investigated the effects of HPN on mitochondrial function and apoptosis following cerebral ischemia/reperfusion injury in rats. Healthy adult SD rats were chosen as the experimental subjects, and the rat ischemia/reperfusion injury model was generated using the modified Zea Longa method. The administration of HPN significantly enhanced the activity of endogenous antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT). Additionally, HPN effectively preserved the morphology and function of mitochondria, reduced the protein and gene expression of Caspase-3 and Bax, increased the protein and gene expression of Bcl-2, mitigated neuronal apoptosis, improved neurological deficits, and decreased the volume of cerebral infarction. Of interest, the protective effect on brain tissue was more evident with increasing doses of HPN. These findings indicate that HPN can serve as an effective protective agent against cerebral ischemia-reperfusion injury.


Assuntos
Isquemia Encefálica , Doenças Mitocondriais , Óxidos de Nitrogênio , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Sequestradores de Radicais Livres/farmacologia , Ratos Sprague-Dawley , Estresse Oxidativo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Antioxidantes/farmacologia , Apoptose , Superóxido Dismutase/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Substâncias Protetoras/farmacologia , Reperfusão , Radicais Livres
12.
Life Sci ; 336: 122319, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38035993

RESUMO

Various strategies can be employed to prevent and manage altitude illnesses, including habituation, oxygenation, nutritional support, and medication. Nevertheless, the utilization of drugs for the prevention and treatment of hypoxia is accompanied by certain adverse effects. Consequently, the quest for medications that exhibit minimal side effects while demonstrating high efficacy remains a prominent area of research. In this context, it is noteworthy that free radical scavengers exhibit remarkable anti-hypoxia activity. These scavengers effectively eliminate excessive free radicals and mitigate the production of reactive oxygen species (ROS), thereby safeguarding the body against oxidative damage induced by plateau hypoxia. In this review, we aim to elucidate the pathogenesis of plateau diseases that are triggered by hypoxia-induced oxidative stress at high altitudes. Additionally, we present a range of free radical scavengers as potential therapeutic and preventive approaches to mitigate the occurrence of common diseases associated with hypoxia at high altitudes.


Assuntos
Doença da Altitude , Sequestradores de Radicais Livres , Humanos , Sequestradores de Radicais Livres/farmacologia , Doença da Altitude/tratamento farmacológico , Altitude , Estresse Oxidativo , Hipóxia/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
13.
Drug Chem Toxicol ; 47(2): 227-234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37553904

RESUMO

In recent years, the cardiotoxicity and hepatotoxicity induced by chemotherapeutic drugs such as cisplatin (CP) have become significant issues. The current research looks into the effects of sodium hydrosulfide (NaHS) on CP-induced hepatotoxicity and cardiotoxicity in rats. A total of 32 male Sprague Dawley rats were separated into four different groups: (1) control group, received only normal saline; (2) NaHS group, was intraperitoneally injected with NaHS (200 µg/kg/d, dissolved in saline) for 15 days; (3) CP group, was intraperitoneally injected only one dose of CP (5 mg/kg) and (4) CP plus NaHS group, received CP along with NaHS. Blood and tissues samples were harvested for biochemical, histopathological, and immunohistochemical investigations. To determine the data's statistical significance, a one-way analysis of variance was used. CP injection significantly increased alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), Creatine phospho kinase (CK-MB), cholesterol, low-density lipoprotein (LDL), triglyceride (TG), and lipid peroxidation levels, while high-density lipoprotein (HDL), albumin, glutathione peroxidase, superoxide dismutase, and catalase (CAT) levels were significantly reduced with pathological alterations in liver and heart tissues. Co-treatment NaHS with CP ameliorates the biochemical and histological parameters. Also, Treatment solely with CP resulted in increased tissue expression of interleukin-1ß (IL-1ß) in liver and heart but co-treatment NaHS with CP reduced the expression of this inflammatory factor. We conclude that NaHS operates in the liver and heart as an anti-inflammatory and powerful free radicals' scavenger to inhibit the toxic effects of CP, both at the biochemical and histopathological levels.


NaHS protects the liver and heart against Cisplatin-induced toxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Cisplatino , Sulfetos , Ratos , Masculino , Animais , Cisplatino/toxicidade , Cardiotoxicidade , Ratos Sprague-Dawley , Fígado , Sequestradores de Radicais Livres/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Estresse Oxidativo , Antioxidantes/farmacologia
14.
J Phys Chem B ; 127(51): 11045-11053, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38103025

RESUMO

Rubiadin (RBD), an anthraquinone derivative, is obtained from Rubia cordifolia, a plant species classified under the Rubiaceae family. Rubiadin has proven beneficial properties, such as anticancer, neuroprotective, anti-inflammatory, and antidiabetic activity. The antioxidant activity of this molecule was suggested by some experimental results but has not been clearly established thus far. In this study, we employ DFT calculations to comprehensively assess the mechanism and kinetics of the HO•/HOO• radical scavenging activity of this compound in relation to solvents. RBD showed moderate HO• radical scavenging activity, with rate constants of 2.95 × 108 and 1.82 × 1010 M-1 s-1 in lipid and polar media, respectively. In the aqueous solution, the compound exhibited remarkable superoxide anion radical scavenging activity (k = 4.93 × 108 M-1 s-1) but modest HOO• antiradical activity. RBD also showed promising antiradical activity against a variety of radicals (CCl3O•, CCl3OO•, NO2, SO4•-, and N3•), while experimental and computational results confirmed that RBD has moderate activity in DPPH/ABTS•+ assays. Thus, RBD is predicted to be a good, albeit selective, radical scavenger.


Assuntos
Antraquinonas , Antioxidantes , Antioxidantes/farmacologia , Antraquinonas/farmacologia , Extratos Vegetais , Solventes , Sequestradores de Radicais Livres/farmacologia
15.
J Org Chem ; 88(24): 17237-17248, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38011833

RESUMO

Rosmarinic acid (RA) is reported in separate studies to be either an inducer or reliever of oxidative stress, and this contradiction has not been resolved. In this study, we present a comprehensive examination of the radical scavenging activity of RA using density functional theory calculations in comparison with experimental data. In model physiological media, RA exhibited strong HO• radical scavenging activity with overall rate constant values of 2.89 × 1010 and 3.86 × 109 M-1 s-1. RA is anticipated to exhibit excellent scavenging properties for HOO• in an aqueous environment (koverall = 3.18 × 108 M-1 s-1, ≈2446 times of Trolox) following the hydrogen transfer and single electron transfer pathways of the dianion state. The neutral form of the activity is equally noteworthy in a lipid environment (koverall = 3.16 × 104 M-1 s-1) by the formal hydrogen transfer mechanism of the O6(7,15,16)-H bonds. Chelation with RA may prevent Cu(II) from reduction by the ascorbic acid anion (AA-), hence blocking the OIL-1 pathway, suggesting that RA in an aqueous environment also serves as an OIL-1 antioxidant. The computational findings exhibit strong concurrence with the experimental observations, indicating that RA possesses a significant efficacy as a radical scavenger in physiological environments.


Assuntos
Antioxidantes , Antioxidantes/farmacologia , Antioxidantes/química , Estresse Oxidativo , Ácido Ascórbico , Água/química , Hidrogênio , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química
16.
Int J Med Mushrooms ; 25(11): 1-10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37831508

RESUMO

We selected polypore mushrooms growing in the Mediterranean area of France to screen their antioxidant activity: Ganoderma applanatum, G. lucidum, Inonotus cuticularis, I. hispidus, Trametes hirsuta, and T. versicolor. Our work also evaluated antioxidant capacity from wild and cultivated G. lucidum fruiting bodies to optimize this biological property on human health. Dried fungal materials were sequentially extracted using cyclohexane, dichloromethane, ethanol, and water. Folin-Ciocalteu assay, oxygen radical absorbance capacity using DPPH and ORAC tests of the polypore extracts were assessed and compared. Among the 28 mushroom extracts tested, four exhibited significant antioxidant activity as ethanol extracts of I. cuticularis, T. hirsuta and wild and cultivated G. lucidum. The ethanol extracts of I. cuticularis and T. hirsuta revealed the highest values for the ORAC test, while the highest values for the Folin-Ciocalteu and DPPH tests were found for the ethanol extracts of cultivated G. lucidum and I. cuticularis. Further studies are needed to identify potential bioactive compounds, especially from I. cuticularis and G. lucidum grown under selected conditions and explore their benefits in the pharmaceutical and food industries.


Assuntos
Agaricales , Antioxidantes , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Agaricales/química , Sequestradores de Radicais Livres/química , Trametes , Fenóis/química , Etanol
17.
J Antibiot (Tokyo) ; 76(12): 731-734, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845350

RESUMO

A new formanilide dimer, fraxinin (1), and three known formanilides (2‒4) were isolated from the culture broth of Perenniporia fraxinea using silica gel and Sephadex LH-20 column chromatographies, medium-pressure liquid chromatography (MPLC), and preparative HPLC. The structures of these compounds were determined by spectroscopic methods, such as NMR and mass analysis, and by comparison of the spectra with previously reported data. The free radical scavenging activities of the isolated compounds were assessed using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. Compounds 1‒3 exhibited ABTS radical scavenging activity with IC50 values in the range of 57.2-250.2 µM. Compounds 2 and 4 marginally reduced disease incidence of powdery mildew with a control value of 42% at 1.0 mg ml-1 in cucumber leaf disk assay.


Assuntos
Antioxidantes , Sequestradores de Radicais Livres , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Antioxidantes/farmacologia , Antioxidantes/química , Compostos de Bifenilo/química , Picratos/química
18.
Adv Healthc Mater ; 12(29): e2300819, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37698231

RESUMO

Radiation-induced heart disease is a serious side effect of radiation therapy that can lead to severe consequences. However, effective and safe methods for their prevention and treatment are presently lacking. This study reports the crucial function of fullerenols in protecting cardiomyocytes from radiation injury. First, fullerenols are synthesized using a simple base-catalyzed method. Next, the as-prepared fullerenols are applied as an effective free radical scavenger and broad-spectrum antioxidant to protect against X-ray-induced cardiomyocyte injury. Their ability to reduce apoptosis via the mitochondrial signaling pathway at the cellular level is then verified. Finally, it is observed in animal models that fullerenols accumulate in the heart and alleviate myocardial damage induced by X-rays. This study represents a timely and essential analysis of the prevention and treatment of radiological myocardial injury, providing new insights into the applications of fullerenols for therapeutic strategies.


Assuntos
Fulerenos , Lesões por Radiação , Animais , Fulerenos/farmacologia , Fulerenos/uso terapêutico , Antioxidantes , Sequestradores de Radicais Livres , Miócitos Cardíacos
19.
Int J Nanomedicine ; 18: 4601-4616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600119

RESUMO

Background: Inflammatory bowel disease (IBD) is closely related to higher intracellular oxidative stress. Therefore, developing a novel method to scavenge the harmful reactive oxygen species (ROS) and alleviate colon inflammation to treat IBD is a promising strategy. Methods: CeO2@PDA-PEG (CeO2@PP) were synthesized by modifying ceria (CeO2) nanorods with polydopamine (PDA) and polyethylene glycol (PEG). The ROS scavenging ability of CeO2@PP was detected by using flow cytometry and confocal laser scanning microscope (CLSM). The anti-inflammatory ability of CeO2@PP was determined in vitro by treating lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The biocompatibility of CeO2@PP was evaluated in vivo and in vitro. Moreover, the therapeutic effects of CeO2@PP in vivo were estimated in a dextran sulfate sodium salt (DSS)-induced colitis mouse model. Results: Physicochemical property results demonstrated that PDA and PEG modification endowed CeO2 nanorods with excellent dispersibility and colloidal stability. CeO2@PP maintained superior enzyme-like activity, including superoxide dismutase (SOD) and catalase (CAT), indicating antioxidant ability. Moreover, in vitro results showed that CeO2@PP with PDA promotes LPS-induced RAW 264.7 macrophages into M2-type polarization. In addition, in vitro and in vivo results showed that CeO2@PP have great biocompatibility and biosafety. Animal experiments have shown that CeO2@PP have excellent anti-inflammatory effects against DSS-induced colitis and effectively alleviated intestinal mucosal injury. Conclusion: The nanoplatform CeO2@PP possessed excellent antioxidant and anti-inflammatory properties for scavenging ROS and modulating macrophage polarization, which is beneficial for efficient colitis therapy.


Assuntos
Colite , Sequestradores de Radicais Livres , Indóis , Nanotubos , Polímeros , Espécies Reativas de Oxigênio , Indóis/química , Indóis/farmacologia , Indóis/uso terapêutico , Polímeros/química , Polímeros/farmacologia , Polímeros/uso terapêutico , Colite/tratamento farmacológico , Colite/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Polaridade Celular , Cério , Animais , Camundongos , Células RAW 264.7 , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
20.
Carbohydr Res ; 533: 108932, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634305

RESUMO

The shaddock ped polysaccharide (SPP) was extracted by ultrasound-assisted enzyme method. Phosphorylated shaddock ped polysaccharides (P-SPP) and acetylated shaddock ped polysaccharides (Ac-SPP) were obtained by chemical modification of SPP. The characterization methods such as infrared spectroscopy and nuclear magnetism were employed to characterize the structures of the two derivatives. The antioxidant activity of SPP and its derivatives was investigated by measuring their DPPH radical scavenging capacity, hydroxyl radical ion scavenging capacity and superoxide anion scavenging capacity. In comparison, P-SPP showed better antioxidant activity. The results indicated that the antioxidant activity of the polysaccharides varied with different chemical modifications.


Assuntos
Antioxidantes , Citrus , Antioxidantes/farmacologia , Antioxidantes/química , Sequestradores de Radicais Livres/química , Oxirredução , Polissacarídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Radical Hidroxila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...